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Dynamics of the evolution of learning algorithms by selection
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We study the evolution of artificial learning systems by means of selection. Genetic programming is used to
generate populations of programs that implement algorithms used by neural network classifiers to learn a rule
in a supervised learning scenario. In contrast to concentrating on final results, which would be the natural aim
while designing good learning algorithms, we study the evolution process. Phenotypic and genotypic entropies,
which describe the distribution of fitness and of symbols, respectively, are used to monitor the dynamics. We
identify significant functional structures responsible for the improvements in the learning process. In particular,
some combinations of variables and operators are useful in assessing performance in rule extraction and can
thus implement annealing of the learning schedule. We also find combinations that can signal surprise, mea-
sured on a single example, by the difference between predicted and correct classification. When such favorable
structures appear, they are disseminated on very short time scales throughout the population. Due to such
abruptness they can be thought of as dynamical transitions. But foremost, we find a strict temporal order of
such discoveries. Structures that measure performance are never useful before those for measuring surprise.
Invasions of the population by such structures in the reverse order were never observed. Asymptotically, the
generalization ability approaches Bayesian results.
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I. INTRODUCTION

In this paper, we consider the dynamics of automatic
sign of learning algorithms for neural network classifiers. W
use genetic programming~GP! @1# as a tool to generate
sequence of populations of programs which implemen
learning algorithm. Programs at one generation give
through crossover and mutations to offspring programs in
next generation according to their fitness. The fitness, wh
defines the problem to be solved, is related in this study
the efficiency of the learning algorithm implemented by t
program. We choose a measure of efficiency based on
ability of generalization, related to the expected error of
output, on examples which are statistically independent fr
the training set. Although GP is similar to genetic algorith
~GA! @2#, for both draw inspiration from Darwinian idea
they differ in very important ways, most importantly in th
representation of the evolving structures. In brief, GA aims
optimizing a fitness function defined on a parameter spac
given dimension. GA deals with a population of parame
vectors in that space, which evolve by operations that ty
cally include mutation and crossover. The optimization
carried on by selecting the fittest individuals~those vectors
which give the best outcomes! for the crossover. GP, on th
other hand, optimizes a fitness function acting over hie
chical structures~i.e., programs! that have noa priori deter-
mined form or size. These are in general represented
strings of symbols with no predefined order~which is the
case for the parameter vector of GA!, constrained only by
syntactic rules. In GP there is a greater freedom in the st
tures that can be represented, whereas in GA the repres
tion is settled from the start.

Usually the automatic design of programs has as princ
aim the solution of a given problem defined by the fitne
function. We are not just interested in final results, but rat
1063-651X/2003/67~4!/041912~11!/$20.00 67 0419
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in the road towards that goal and its characterization.
analyzing the dynamics we expect to learn something ab
how different functional structures become useful and h
they invade the population of programs. In our analysis
have dealt with the following set of general questions:~a!
What are the characteristics of good algorithms? or m
specifically, which variable combinations are present in s
cessful learning algorithms?~b! Is the emergence of suc
structures ordered in time, and if it is so, is that order robu

We find that the road from primitive to fitter or mor
evolved programs is signaled by the abrupt emergence
such structures. The main result of this paper is that from
simulations we can identify such a type of time orderin
This has some rather interesting biological interpretation

An important question deals with the choice of the lea
ing scenario. We study learning of a static linearly separa
~LS! rule, a sufficiently simple learning problem that can
studied by analytical means, as far as final results are c
cerned, but which presents a wealth of interesting resu
Extensions to non-LS and time dependent rules, the ev
tion of kernels for support vector machines and several o
possible extensions are left for future work. Related qu
tions have been addressed before@3,4#, see about best result
and Bayesian bounds in Ref.@5#, for a variational point of
view about the perceptron learning in Ref.@6#, about feed-
forward architectures with hidden units in Refs.@7–9#, for
drifting rules in Refs.@10,11#, in an unsupervised scenari
@12#, from a more general Bayesian perspective in Refs.@13–
15#; in the case of offline learning in Refs.@5,16#. From the
perspective of time ordering it has been discussed in R
@17#.

Analysis of the emergence of structures and ensuing in
sions is done by characterization of the populations at
different levels: phenotypic and genotypic. At the phenoty
or expressed level, description deals with quantities t
©2003 The American Physical Society12-1
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measure the expression of important traits. Program dif
ences are irrelevant as long as they give rise to the im
mentations of the same function. Even different functions
the same if they lead to similar fitness values. The genoty
level deals with properties that depend on the detailed st
ture of the individuals. Two programs are genotypically d
ferent if their sequences of variables and operators are
ferent, even if they give rise to the same outcomes. T
entropies are used in order to deal with the different desc
tion levels. The phenotypic entropyS describes the distribu
tion of fitness in the population, and the genotypic entropyH
describes the distribution of probabilities of symbols@18#.

The creation of a new program by mixing or crossover
preexisting programs, although not impossible, can be d
cult to implement in programming languages such as C
Fortran. The main problem is that the program that mani
lates the population programs—themetaprogram—has to cut
and paste the parsing trees of the population programs,
then compile them in order to perform the fitness meas
all during run time@1,19#. The major part of the work in GP
has been developed in LISP which is also the case in
study. LISP’s most prominent characteristic with regard
GP is that programs and data have a common form and
treated in the same manner. This common form is equiva
to the parse tree for the computer program. Thus, it can
found that genetic manipulations of parse trees are nat
LISP operations. We have developed also a protocol
simulation of LISP on a Linux cluster, which is described
Ref. @20#.

The paper is organized as follows. In Sec. II A, we d
scribe the learning scenario of rule extraction by a percpe
learning from examples. Section II B gives a brief descr
tion of GP from the very special point of view which inte
ests us here. Section II C follows with a description of t
tools to characterize the dynamics. Section III presents
results and concluding remarks can be found in Sec. IV.

II. THE PROBLEM AND THE METHOD

A. Problem: Learning by a perceptron

The learning problem to be analyzed by the GP m
strike a balance between being complex enough so tha
teresting dynamics arises and being simple to the poin
that details can be understood and simulations perform
The perceptron meets these demands and has a long
distinguished history. For an extensive view from a statisti
mechanics perspective, see Ref.@4#. We consider the realiz
able teacher-student learning scenario. The perceptron
sifies vectorsSPRN ~here obtained i.i.d from a uniform dis
tribution! in two categories with labelssJ561 according to
the rulesJ5sgn(J•S). The aim of any learning dynamics i
to determine the weight or synaptic vectorJPRN from pairs
of examples (Sm ,sBm) which carry information about a rule
We restrict ourselves to the case of noiseless realizable r
with the labels uncorrupted and generated by another per
tron with an unknown weight vectorBPRN. We consider
on-line learning, soJ will be built sequentially by modifica-
tions induced by the arrival of new pairs of examples. T
can be simplified even further by concentrating on the p
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ticular form of Hebbian learning, where the increments oJ
are weighted by amodulationfunction f, thus

DJm5Jm2Jm215 f sBmSm /AN. ~1!

This is not very restrictive, as a large fraction of the pre
ously studied algorithms, both on-line and off-line, may
put in a similar way~see, e.g., Ref.@4#! and in the~thermo-
dynamic! limit of large networks it can represent asympto
cally efficient learning, which even saturate Bayesi
bounds.

There are two time scales in this problem. The slow sc
is measured in generations, where the learning progr
evolve. The fast scale can be thought of as theage of a
neural network. It is a measure of the number of example
which a network has been exposed in the learning ph
where fitness is being measured.

B. Method: Algorithm construction by genetic programming

In this section, we describe briefly our implementation
GP for the problem at hand. Conventional GA works by m
nipulating fixed-length character strings that represent ca
date solutions of a given problem. For many problems, h
archical computer programs are the most natu
representation for the solution. Since the size and the sh
of the program that represents the solution are unknown
advance, the program should have the potential of chang
its size and shape.

The simulation starts with a population of randomly cr
ated programs. All these programs have been constru
using predetermined sets of variables and operators.
construction process respects some rules in order to avoid
creation of programs that cannot be evaluated. The GP
erations are used to create the population of the next gen
tion. The programs are ranked by their fitness and then
GP operations are applied again. These two steps are
iterated.

The most common computer language used in GP is LI
therefore we will refer to the population individuals as pr
grams or LISPSexpressions indistinctly. We call afaithful S
expression~FSE! a list of symbols that do not return an erro
message when evaluated. Components, also called atom
the S expressions can be either functional operators or v
ables. LetF be the set of all the operators andV the set of all
the variables used to write down the FSEs. The choice
these sets depends upon the nature of the problem b
faced. For instance, if the solution of a problem can be r
resented by quotients of polynomials, a suitable choice
the sets isF5$12* /% andV5$x1%. For example, a FSE is
(1„1xx… „* x„2x(2xx)……), which is a ~nonunique! LISP
representation of the function 2x1x2. The simplest FSE is a
variable. The next simplest FSE is an operator followed
the appropriate number of variables~two in the example
above!. All FSEs are either a variable or a list with a
operator followed by an appropriate number of FSE
Unfaithful S expressions are for instance (xx), (1x* ),
and (x2x).
2-2
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The GP operations considered in the present work
asexual reproduction, mutation, and crossover. Dur
asexual reproduction a certain fraction of the top ranked
dividuals, the top set, is copied without any modification in
the new generation, ensuring the preservation of struct
that made them successful. Mutation is implemented on
individual by changing an atom at a random position. T
new and old atoms are different but of the same kind
ensure faithfulness. Finally, the modified tree is copied i
the new generation. In order to accelerate the dynamics,
ferent mutation rates can be used for different atom type

There are no sexes associated to the programs and c
over is a hermaphrodite sexual GP operation. Crossover
ents are chosen by tournament, which is done as follo
First, consider a set of the population, then select an aga
such that 1<a<P (P is the maximum age! with a probabil-
ity proportional toa. From the chosen set, a certain numb
~e.g., ten! individuals are selected at random. The progr
with smaller generalization error at agea is selected for
crossover. In our experiments, the first parent is chosen f
the top set by tournament@1#. The second parent is chosen b
tournament among the entire population. From each par
an atom of the same type is selected at random. The F
with roots in the selected atoms are interchanged to gene
two offsprings. In order to avoid uncontrolled growth if th
depth of any of the offsprings is above a given threshold,
program is deleted. The mutation and crossover operat
are represented in Figs. 1 and 2.

The GP parameters used in the simulation are show
Table I. A short discussion about the parameter values wil
presented in the conclusions. At generation zero, a pop
tion of 500 FSEs is created at random. The programs h
~in agreement with Table I! a maximum depth of seve
nested parentheses. The variable set used to build the
grams is

V5$sJmsBmhSmJm%, ~2!

the presumed and correct classifications, the postsyna
field

h5Sm•Jm /iJmi , ~3!

the input and the synaptic vectors. The operator set is

FIG. 1. LISP programs as parsing trees before and after a
mutation. A randomly selected atom in the parse tree is change
another randomly selected atom of the same type. In this exam
a multiplication operation is replaced by an addition.
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F5$Psqr Pexp Plog abs 12* % p. pN. ev* vv1 vv2%,
~4!

where Psqr, Pexp, Plog, and % are the protected squa
root, exponential, logarithm, and division;abs, 1, 2, and *
are the usual absolute value, addition, subtraction, and m
tiplication; andp., pN., ev*, vv1, andvv2 are the inner
product (e.g.,x•y for x, y «RN), normalized inner produc
(x•y/N), the product of a scalar times a vector (ax), the
addition of two vectors and the subtraction of two vecto
(x6y), respectively. Protected functions are functions who
definition domains have been extended in order to acce
larger set of arguments. The definitions of these functio
appear in Table II.

TABLE I. Control parameters for the GP simulation in our e
periments.

Parameters Values

Population size 500
Reproduction rate 10%
Mutation rate 0.01%
JJ mutation rate 0.2%
Max. depth generation-0 7
Max. depth generation-G 17
Probability of internal point selection~crossover! 90%
Tournament participants 10
Vector sizes 11
Maximum number of training examples 100
Maximum number of sets of examples 50
Slave processors 10

P
to
le,

FIG. 2. GP crossover. Two parents are selected from the po
lation. A random point in each tree is selected. The branches
grow from the point are interchanged in order to generate two
spring.
2-3
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If either one of the offsprings has a depth bigger than
it is deleted. With a mutation rate of 0.01%~one every 20
generations! a mutation is performed in the offsprings. B
cause the pairsJmJm become rare after few generations~at
the beginning of the simulation, the learning algorithms t
useJm are not efficient! we keep injecting this pair with a
rate of 0.2%~at least one individual per generation receiv
this pair!. Different mutation rates just serve the purpose
accelerating the dynamics and decrease the time scale, w
it takes for interesting things to happen. The process is
peated until the new population reaches the full size fix
here at 500.

After a new population is created, the fitness of each
dividual is measured and so a new ranking is built. There
a great freedom in choosing the fitness function. It is alw
a macroscopic or phenotypic quantity, i.e., a function of
expressed characters, and although it reflects the micros
ture, it is not a function of the genetic details of the ind
vidual. Errors in the measurement of the fitness have a b
ing on the dynamics, not entirely different from th
temperature in simulated annealing.

C. Method: Characterization of the dynamics

We are interested in studying the evolution of learni
algorithms and merit can be attributed in different ways.
choose to study the case where merit is based on the ab
to generalize. The generalization error is

eg~m!5^Q~2sBmsJm!&, ~5!

averaged over the distribution of examples. In the thermo
namic limit, we have the following for uniform distribution
of examples:

eg~m!5
1

p
arccosr, ~6!

where

r5 lim
N→`

S Jm•B

iJmiiBi D ,

TABLE II. Definition of the protected function as FSEs. Th
protected square root is just the square root of the absolute valu
its argument. In this manner we extended its domain into the ne
tives. The exponential is well defined in the reals, although, in or
to avoid overflows, we have to impose a cutoff. The protected lo
rithm has a cutoff at a small positive number to extend its domai
the nonpositive numbers. And the protected quotient allows the
vision by zero~if the absolute value of the denominator is smal
than a tiny number, the protected quotient returns a big numbe
not it just returns the usual quotient!.

Function Definition

(Psqr x) (sqrt (abs x))
(Pexp x) (exp(min13.0 x))
(Plog x) ( log(max1.d217 x)
(%x y) „if „.1.d17(abs y)…1.d17(/x y)…
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andm indicates its age, e.g., how many examples have b
presented to the network. Since the aim is to obtain al
rithms with the smallest possible generalization error at
ages, and given that the expected generalization error~at
least for good learning algorithms! is a decreasing function
of the age, a suitable choice for the fitness function of thekth
program is

F (k)5 (
m51

P

meg
(k)~m!, ~7!

where P is the total number of examples~maximum age!
presented to the network. To calculate the generalization
ror, an average is taken over at least 50 sets of example

The distribution of fitness across the population can
described by the normalized fitness, a measure of the frac
of the total~exponential! fitness that an individual has,

n( i )5
exp~2F ( i )!

(
k51

M

exp~2F (k)!

, ~8!

whereF (k) is the fitness measure of thkth individual of the
population Eq.~7!. Note that smaller values of the fitness a
associated to better performances. The use of the expone
just amplifies the importance of the individuals with bett
performance. We introduce the entropy of the normaliz
fitness

S52 (
k51

M

n(k)ln~n(k)!, ~9!

a function of the expressed characters of the population~fit-
ness!, thus dubbed the phenotypic entropy or Ph-entro
Note that this entropy is largest when all the members o
population have the same fitness and that the appearance
distinguished individual, for better or worse, is signaled b
decrease in the Ph-entropy.

Each FSE in the population has a well defined lengthl (k),
that is, the number of atoms~operators and variables! that
make it up. We define the mean lengthL as

L5
1

M (
k51

M

l (k). ~10!

To characterize the internal structure of the programs,
estimate for each positioni the probability that symbolsq ~a
variable or an operator! appears at positioni, v(squ i ), by
measuring the frequency over all the population:

v~squ i !5

(
k51

M

Q~l (k)2 i !d~si
(k)usq!

(
k51

M

Q~l (k)2 i !

, ~11!

whered(si
(k) u s)51 if si

(k) , the i th symbol in thekth indi-
vidual, is equal tos, and zero otherwise. The genotypic e
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r
-

o
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FIG. 3. ~Left! Fitness of the best-of-generation individual of the population vs the number of generations. A sudden change tak
around 380 generations.~Right! The exponent of algebraic decay ofeg . Upper curves, BOG, lower curves, population average. All quanti
here and in the following figures are dimensionless.
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tropy ~or G-entropy!, which is a function of the microstruc
ture of the individuals in the population, is then defined
@18#

H52 (
sqPQ (

i
v~squ i !lnuQuv~squ i !, ~12!

whereQ5F ø V is the set of symbols.
A measure of the capacity of a population of using a fu

tional structure may be given by the frequency where
combination of variables is found. This is admittedly crud
since its position in the program determines whether it
useful or not. On the other hand, the absence of such c
bination does not rule out the possibility that some ot
combination is doing the job in a more cumbersome man

There are two quantities or functional structures that
of interest both in a quantitative and a qualitative analysis
the learning algorithms. The first can be associated to
producthsBm . This quantity can be functionally describe
as quantifying a measure of surprise. This is becaus
hsBm.0 (sBm5sJm), the network will classify correctly
the example with classification labelsBm , while if hsBm
,0 (sBmÞsJm), the classification is wrong. Thus it gives
signal of how wrong or correct was the classification a
also how stable that classification is under changes of
weight vector. This is obviously an important factor to ta
into account while incorporating the information in to
given example. Thus, we define the surpriseS̄ as the follow-
ing mean value:

S̄5
1

NP
(
k51

M

(
i 51

l(k)21

@d~si
(k)uh!d~si 11

(k) usBm!

1d~si
(k)usBm!d~si 11

(k) uh!#, ~13!
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where NP is the total number of pairs of symbols of th
population.

The second functional structure we will concentrate on
something that can estimate the performance or acquired
perience of the network in the implementation of the rule
properly used, this is akin to annealing of the learning rate
to the functional annealing in learning algorithms. This c
be implemented by using the length of the weight vectorJm .
Therefore, we will associate to performanceP̄ the following
expression:

P̄5
1

NP
(
k51

M

(
i 51

l(k)21

d~si
(k)uJm!d~si 11

(k) uJm!, ~14!

that is, the density of pairsJmJm.

III. RESULTS

Our numerical experiments have been performed in
Linux cluster, using the strategy described in Ref.@20#. Fif-
teen experiments, starting from different random seeds, h
been performed using the GP paradigm described ab
Each run could take up to a week. Some runs failed to evo
to anything interesting. On three runs, the programs c
lapsed to just one symbol. For six of them, the complexity
the populations was high but no good solutions were fou
and no abrupt changes in behavior occurred. Interesting
sults were obtained in the remaining six. Within this la
group, results were different in several respects, but m
interestingly, had striking similarities which we now de
scribe. In what follows we consider an illustrative run whic
presents clearly some features that are typical of the o
runs of the last group. We found a dramatic change of
havior around generation 380 that can be seen by using
eral different signatures. Figure 3, left side, shows the fitn
2-5
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FIG. 4. Gray-scale coded bar graph of the best-in-generation~BOG! individual. The timeG in the horizontal axis is measured i
generations and the length of the program is in the vertical axis. Gray level of pixel at coordinates (G,i ) codes for the frequencyv(squ i ),
at which the symbolsq ~which is thei th atom of the best-of-generation FSE! appears at positioni, at generationG according to the scale on
the left.
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of the most adapted program or best of generation~BOG! as
a function of time. On the right side the figure shows t
exponent of the generalization erroreg decay of the BOG
and of its average over the population. Any reasonably
algorithm should present a generalization error that dec
with age, for otherwise the network would not be learni
and thus unfit. For randomly chosen examples we can ex
on general theoretical grounds a power law decay@4#. The
exponent shows a sharp change, specially if the popula
average is compared to that of the BOG. Finite size errors
responsible for the fact that exponents larger than 1 can
found. To understand how representative of the whole po
lation is the BOG we composed a gray-level coded bar gr
~see Fig. 4! where each vertical bar represents the BOG p
gram written as a string of symbols; time is measured
generations in the horizontal axis. At the position of ea
symbol in the program, a gray square represents the em
probability of the symbol in the population Eq.~11!. Note
that quite rapidly~in no more than 20 generations!, an initial
symbol is predominant in the population. This is invarian
found in all runs and it is always a symbol that ensures t
the modulation function is positive, for otherwise the lea
ing would be anti-Hebbian and inefficient. The initial part
the code is very robust and thus is shared by almost all
population.

Both entropies ~phenotypic and genotypic! present
changes about the same time~Figs. 5 and 6!. The scale of the
fluctuations of the Ph-entropy@Eq. ~9!, Fig. 5# after the tran-
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sition are much larger than before. A decreasing trend in
Ph-entropy can also be identified. Low values of this entro
identify the existence of phenotypically distinguished pr
grams. The decreasing trend after the transition together
the decrease of the average decay exponent shows tha
though the BOG has been largely improved, the populat
in general has not. TheG-entropy Eq.~12! and the mean
length Eq.~10! change abruptly at the transition. This redu
tion is not present in all transitions. It just indicates that
this particular run the invading mutation occurred in a sm
program. TheG-entropy and the mean length are linear

FIG. 5. Phenotypic entropy as a function of the number of g
erationsG.
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FIG. 6. ~Left! Genotypic entropy and mean length as functions of the number of generationsG. The transition can be seen by the sha
change aroundG5380. ~Right! H vsL. Two linear fits are shown for data before the transition~crosses! and data after the transition~circles!.
To see that two linear fits are necessary we did a single linear fit of the whole data set and plotted~inset! the histograms of the residuals t
the single linear model. The two histograms are for data before and after the transition, respectively, and the separation of the two p
support to the modeling by two linear regimes.
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correlated. This is natural sinceG-entropy, as defined shoul
be extensive. What is unexpected is the fact that there
two distinct linear regimes before and after the transition.
see this we did a linear fit to the whole data set and plotte
histogram of the residuals, that is, the difference between
actual value of a data point and the corresponding value
the linear model. The two histograms in the inset of Fig
show clearly a systematic error for the single linear mod
These results prove the existence of two different regime
the whole simulation is considered, fluctuation distributio
of both entropies apparently have long tails, but looking
each regime separately, a simple Gaussian distribution of
ferent width also fits the data.

FIG. 7. Typical behavior for late stage generation: the length
the weight vectoruuJuu increases monotonically when the error
generalization decreases, thus it can be used as a measure
experience of the individual or of its performance in solving t
classification problem. It leads to efficient annealing of the learn
rates.
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To understand the nature of the regimes mentioned ab
we present Figs. 7–11. To show the correlation between
size of the synaptic vector and the generalization error
later stages of the simulation, we show a graph ofiJmi as a
function of the generalization error for a program with
good fitness~Fig. 7!. The two variables are clearly antico
related. This justifies our interpretation of the probability d
fined in Eq.~14! as a means of measuring performance.
Fig. 8 we plot the surpriseS̄ Eq. ~13! and the performanceP̄
Eq. ~14!, as functions of the number of generations. It is cle
that the emergence of a measure of performance is at a
380 generations.

In Fig. 9 we present the most adapted individual at g
erations 300, 350, 400, and 450. Just before the trans
there is no pairJmJm present in the program~at generations

f

the

g

FIG. 8. Typical behavior of the density of pairsS̄ ~surprise! and

P̄ ~performance! as functions of timeG measured in generations

Notice the sharp rise at the beginning ofS̄ and the later rise ofP̄.
The time ordering is robust and was never seen in the reverse o
2-7
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FIG. 9. The strings of symbols are the programs best of generation at generations 300, 350, 400, and 450~from top!. The gray levels
represent the frequenciesv(squ i ), according to the gray-level scale.
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300 and 350!. After the transition, the size of the best ind
vidual decreases and several pairsJmJm appear.

A more general analysis of the density of pairs can
done with the help of Fig. 10. In these pictures we pres
the relative frequencies at which each possible pair app
in the population. The vertical axis represents the first e
ment of the pair, the horizontal axis the second element.
size of the white squares represents the frequency of the
relative to the most frequent pair~represented by the large
square in each picture!. In panel~a! we present the density o
pairs at generation 300,~b! corresponds to generation 35
~c! to generation 400, and~d! to generation 450. In~a! and
~b! there is no measure of performance. The most frequ
pair is the combinationsBmsBm , which is just a 1, but not
04191
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nt

quite since it can evolve into different directions. After th
transition, in panels~c! and ~d!, this pair remains the mos
frequent, but important changes have happened. There
small white squares for the pairJmJm representing the emer

gence of a measure of performanceP̄ by the learning algo-
rithms.

The modulation function of the best individual at the b
ginning of the simulation, before the transition, and after
transition, is presented in Fig. 11. The Hebbian regime,
regime with surprise, and the regime with both surprise a
performance clearly appear in panels~a!, ~b!, and~c!, respec-
tively. The modulation function in~c! closely resembles, in
shape and fitness, the optimal Bayes result.
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FIG. 10. Density of pairs for generations 300~a!, 350 ~b!, 400 ~c!, and 450~d!. In all the cases the most frequent pair issBmsBm

(SigB SigB). Only in the last two panels does the pairJJ appear.
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IV. CONCLUSIONS

Evolutionary programming techniques provide the me
to automatically design programs which solve certain cl
of problems. In this paper, however, we were not only int
ested in the final result. The problem that GP was set ou
solve has been previously analyzed from many angles a
detailed understanding of on-line learning in perceptrons
been achieved. Rather we concentrated on the dynamic
evolution and have detected dynamical changes in the be
ior of the GP solutions that are related to the emergenc
functional structures. This is not a conventional phase tr
sition associated to singularities arising in the thermo
namic limit. Nevertheless, the abruptness of the invasio
measured in generations, justifies calling it a transition.
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A few runs failed to present the transition, possibly b
cause of time limitations, but it was seen in many differe
runs. Some features were never reproducible but others w
present in every experiment. As examples of those featu
that depend upon contingencies we include the numbe
generations before the change takes place, the width of
change~some were just about ten generations wide, oth
took several tens of generations!, and the result of the GP
itself, i.e., the program that implements the best learn
algorithm. The variability of these features, important as th
may be from a constructive point of view when the soluti
to the problem is the main concern, indicates that tak
averages over different runs would lead to wrong interpre
tions. Standard statistical assesment of the probability of
2-9
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FIG. 11. Modulation functions.~Left! Early stage where surprise is not measured and annealing by experience is ineffective.~Center!
Intermediate stage, now surprise is used but annealing by experience has been lost.~Right! Late stage, after the transition, where surpr
through the measurement ofhsBm and annealingJmJm are correctly implemented.
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currence of the phase transition is left for future work. W
tried, instead, to identify robust features which can be co
dently expected to occur every time good solutions w
obtained. In serving such purpose we have characterized
dynamics by looking at the phenotypic Eq.~9! and genotypic
entropies Eq.~12!, which give a picture of the distribution o
phenotypic fitness and functional or symbolic structure,
spectively. The conformation diagram Fig. 4 gives a bir
eye view of the relation of the BOG and the frequency
symbols in the population as well as its length. A more co
plete analysis of the BOG can be done through Fig. 9. T
gray scale attributes light gray to symbols extremely frequ
in the population at that position, and monotonically
tributes increasingly darker gray levels as the symbols
more unlikely to be found. We can see that after the chan
the third program ~BOG at G5400) presents symbol
mostly in the dark end of the scale, except for the cons
dated initial part. Fifty generations later, there are islands
lighter gray in the BOG. That means that the genetic cha
ter of the best individual has invaded the population. T
main robust feature can be identified once the change
been understood from a functional point of view, in terms
two concepts: the surprise (S̄) that newly arrived information
elicits and how such information should be taken into
count based on how much experience (P̄) the network has in
solving the task at hand. A temporal order in the emerge
of structures can be identified. Performance can be us
only after surprise is measured correctly.

It can be shown, at least in the thermodynamic limit, th
for algorithms which do not measure surprise their gener
zation error decays asm21/2 and for them annealing is use
less. Learning algorithms that use surprise have a faster
cay (eg}m21) and algorithms that use both surprise a
annealing by experience have the fastest decay since
can have smaller coefficients ofm21. From Figs. 8 and 11
we can conclude that the chronological order is respected
earlier stages, the BOG is unable to use surprise. Altho
surprise functional structures are found throughout the po
lation, their incorrect use makes the BOG an annealed H
bian algorithm. It is known that annealing will not improv
the Hebbian learning and the frequency of performance fu
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tional structures decreases until it vanishes. ThusP̄ is almost
immediately extinguished from the population. It will onl
appear in very modest ways through mutation and, rep
edly individuals which use it become extinct. Later on, s
prise is finally well accounted for and correctly classifi
examples cause typically smaller Hebbian corrections t
those incorrectly classified. At that point the correct use
surprise potentializes the beneficial use of functional str
tures that measure performance. Then a correctly anne
algorithm emerges that resembles quite closely the mod
tion functions found through Bayesian or variational a
proaches. This successful strategy invades the populatio

The values of the parameters used to perform the exp
ments described~Table I! are the best values found, accor
ing to Ref.@1# and previous experiments. Populations larg
than 500 increase the required CPU time for the experim
without improving the description of the phenomena. T
reproduction rate, maximum tree’s depths, and probability
internal point selection are the same as in Ref.@1#, which
presents a reasonable justification for these values. The v
of the mutation rate has been set low enough in orde
avoid deleterious effects. The rate of the specificJJ mutation
is appropriate in order to have a mutant per generation. T
accelerates the emergence of the performance and doe
affect the time ordering. The number of tournament part
pants has been increased from a low value of 2 to 10 in o
to study the invasion of the best individual genes into
population~observe that the bigger the number of participa
the larger the over selection of the best individuals!. The
effects observed are not strongly coupled with the numbe
tournament participants, thus we left this number set to
The size of the perceptron, the number of training sets,
the number of examples per set were adjusted in order to
smooth generalization error curves.

There are several possible extensions of this probl
From a biological point of view, there is a suggestive sim
larity with the time order in which certain structures respo
sible for measuring surprise and performance have appea
Will this order be found in more complex artificial settings
Is this biologically significant? Can it be extended to oth
functional structures? It should also be quite interesting
2-10
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further analyze other transitions in the automatic design
programs.
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